博客
关于我
Container: 上下文聚合网络
阅读量:462 次
发布时间:2019-03-06

本文共 676 字,大约阅读时间需要 2 分钟。

卷积神经网络(CNNs)在计算机视觉领域一直扮演着核心角色,其多种高效变体依然广受欢迎。然而,随着Transformer技术从自然语言处理领域逐渐迁移到计算机视觉领域,越来越多的研究开始尝试摒弃传统的CNN架构,转而采用端到端的Transformer解决方案。令人惊讶的是,最近一个发现表明,即使完全摒弃传统的卷积层和Transformer组件,一个基于简单多层感知器(MLP)的架构也能有效地生成视觉表征。尽管CNNs、Transformers和MLP-Mixers在架构上可能被视为截然不同的体系,但我们提供了一个统一的理论视角,表明它们实际上是神经网络在聚合空间上下文信息方面的一种通用方法的不同实现。

基于这一观察,我们提出了一种名为CONTAINER(CONText AggregatIon NEtwoRk,上下文聚合网络)的通用构建块。该架构能够像Transformer一样充分利用长距离上下文交互,同时仍然保留CNN中局部卷积操作带来的归纳偏置优势,从而实现传统CNN在训练速度上的优势。通过实验,我们在ImageNet数据集上使用2200万参数的模型实现了82.7%的准确率,充分验证了CONTAINER架构的有效性。

CONTAINER的核心思想在于通过多头上下文聚合机制,有效地捕捉图片中的空间关系,同时结合局部卷积的归纳能力,避免了传统Transformer可能遇到的高计算成本和信息过载问题。这种架构设计既保留了Transformer在长距离依赖上的优势,又避免了CNN在训练速度上的瓶颈,使其成为计算机视觉领域的有力解决方案。

转载地址:http://pjdbz.baihongyu.com/

你可能感兴趣的文章
mysql_real_connect 参数注意
查看>>
mysql_secure_installation初始化数据库报Access denied
查看>>
MySQL_西安11月销售昨日未上架的产品_20161212
查看>>
Mysql——深入浅出InnoDB底层原理
查看>>
MySQL“被动”性能优化汇总
查看>>
MySQL、HBase 和 Elasticsearch:特点与区别详解
查看>>
MySQL、Redis高频面试题汇总
查看>>
MYSQL、SQL Server、Oracle数据库排序空值null问题及其解决办法
查看>>
mysql一个字段为空时使用另一个字段排序
查看>>
MySQL一个表A中多个字段关联了表B的ID,如何关联查询?
查看>>
MYSQL一直显示正在启动
查看>>
MySQL一站到底!华为首发MySQL进阶宝典,基础+优化+源码+架构+实战五飞
查看>>
MySQL万字总结!超详细!
查看>>
Mysql下载以及安装(新手入门,超详细)
查看>>
MySQL不会性能调优?看看这份清华架构师编写的MySQL性能优化手册吧
查看>>
MySQL不同字符集及排序规则详解:业务场景下的最佳选
查看>>
Mysql不同官方版本对比
查看>>
MySQL与Informix数据库中的同义表创建:深入解析与比较
查看>>
mysql与mem_细说 MySQL 之 MEM_ROOT
查看>>
MySQL与Oracle的数据迁移注意事项,另附转换工具链接
查看>>