博客
关于我
Container: 上下文聚合网络
阅读量:462 次
发布时间:2019-03-06

本文共 676 字,大约阅读时间需要 2 分钟。

卷积神经网络(CNNs)在计算机视觉领域一直扮演着核心角色,其多种高效变体依然广受欢迎。然而,随着Transformer技术从自然语言处理领域逐渐迁移到计算机视觉领域,越来越多的研究开始尝试摒弃传统的CNN架构,转而采用端到端的Transformer解决方案。令人惊讶的是,最近一个发现表明,即使完全摒弃传统的卷积层和Transformer组件,一个基于简单多层感知器(MLP)的架构也能有效地生成视觉表征。尽管CNNs、Transformers和MLP-Mixers在架构上可能被视为截然不同的体系,但我们提供了一个统一的理论视角,表明它们实际上是神经网络在聚合空间上下文信息方面的一种通用方法的不同实现。

基于这一观察,我们提出了一种名为CONTAINER(CONText AggregatIon NEtwoRk,上下文聚合网络)的通用构建块。该架构能够像Transformer一样充分利用长距离上下文交互,同时仍然保留CNN中局部卷积操作带来的归纳偏置优势,从而实现传统CNN在训练速度上的优势。通过实验,我们在ImageNet数据集上使用2200万参数的模型实现了82.7%的准确率,充分验证了CONTAINER架构的有效性。

CONTAINER的核心思想在于通过多头上下文聚合机制,有效地捕捉图片中的空间关系,同时结合局部卷积的归纳能力,避免了传统Transformer可能遇到的高计算成本和信息过载问题。这种架构设计既保留了Transformer在长距离依赖上的优势,又避免了CNN在训练速度上的瓶颈,使其成为计算机视觉领域的有力解决方案。

转载地址:http://pjdbz.baihongyu.com/

你可能感兴趣的文章
Mysql DBA 高级运维学习之路-DQL语句之select知识讲解
查看>>
mysql deadlock found when trying to get lock暴力解决
查看>>
MuseTalk如何生成高质量视频(使用技巧)
查看>>
mutiplemap 总结
查看>>
MySQL DELETE 表别名问题
查看>>
MySQL Error Handling in Stored Procedures---转载
查看>>
MVC 区域功能
查看>>
MySQL FEDERATED 提示
查看>>
mysql generic安装_MySQL 5.6 Generic Binary安装与配置_MySQL
查看>>
Mysql group by
查看>>
MySQL I 有福啦,窗口函数大大提高了取数的效率!
查看>>
mysql id自动增长 初始值 Mysql重置auto_increment初始值
查看>>
MySQL in 太多过慢的 3 种解决方案
查看>>
MySQL InnoDB 三大文件日志,看完秒懂
查看>>
Mysql InnoDB 数据更新导致锁表
查看>>
Mysql Innodb 锁机制
查看>>
MySQL InnoDB中意向锁的作用及原理探
查看>>
MySQL InnoDB事务隔离级别与锁机制深入解析
查看>>
Mysql InnoDB存储引擎 —— 数据页
查看>>
Mysql InnoDB存储引擎中的checkpoint技术
查看>>